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Reconstruction of Nonuniform Transmission
Lines from Time-Domain Reflectometry

Ching-Wen Hsue,Senior Member, IEEE,and Te-Wen Pan

Abstract—A novel technique is developed to reconstruct the
physical structures of a nonuniform transmission line from its
time-domain or frequency-domain reflection (scattering) coeffi-
cient. This technique takes the past history of reflection processes
of nonuniform line into considerations, and its accuracy exceeds
that of a conventional time-domain reflectometry (TDR) tech-
nique. Experimental results are presented to illustrate the validity
of this reconstruction technique.

I. INTRODUCTION

T HE time-domain reflectometry (TDR) technique has been
widely used to detect discontinuities of signal lines in-

cluding both RF and optics transmission paths [1]–[4]. Not
only does the TDR technique sense the discontinuities of
transmission lines, it can also measure the “magnitude” of
discontinuities. Perhaps the most versatile property of TDR
is that it identifies the locations of discontinuities, which
enables field engineers to fix broken cables or fiber wires
promptly. The theory of TDR is simple; it is based on the fact
that an incident step wave will experience reflection when
it encounters a discontinuity, i.e., a reflected step wave will
occur. By measuring the reflected step wave in time domain,
we can calculate both the characteristic impedance variation
and physical locations of discontinuities.

Most of the conventional TDR applications thus far have
been limited to the detection of discrete discontinuities of
transmission lines. For such a situation, each step change of the
reflected wave is caused by a discrete isolated discontinuity.
Because of the reasons mentioned previously, conventional
TDR techniques fail when the transmission line consists of
continuously varying or multiple/complex discontinuities. In
other words, the conventional TDR neglects both transformer
effect [5] and internal multiple reflection–transmission pro-
cesses of nonuniform line. For a nonuniform line, the reflected
wave at a certain time is due to the superposition of all multiple
reflected signals that arrive at the input terminal at that instant
time. If the reflected wave at certain time composes several
signal components due to several individual discontinuities,
the conventional TDR techniques will be unable to separate
the reflected signal components caused by the corresponding
discontinuities. To characterize the nonuniform line using TDR
techniques, it is therefore necessary to study the internal
multiple transmission–reflection processes of a signal line,
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wherein a nonuniform line is treated as a cascaded multiple-
section transmission line.

Many authors [1]–[12] have contributed significantly to the
study of wave interaction with transmission lines in both
frequency and time domains. Most of the work thus far has
focused mainly on the formulation and computation techniques
of scattering waves on transmission lines. Only a few papers
[8]–[10] were concerned with inverse scattering problems in
which the structures of transmission lines are obtained from
given scattering parameters. Burkhart and Wilcox [8] used a
layer-peeling algorithm to generate transmission line profiles
that produce arbitrary pulse shape. Hayden and Tripathi [10]
employed time-domain measurements to investigate charac-
teristics of multiple line interconnections. These were some of
recent studies regarding the TDR applications.

To extend the applications of TDR techniques to the re-
construction of nonuniform transmission lines, we investigate
the reflected wave caused by the impedance discontinuity of
a nonuniform line. The reflected wave is divided into equal
length multiple subintervals wherein the time duration of each
subinterval defines the physical length of each subsection of
nonuniform signal line. We find that the reflected wave at the
input end of nonuniform line is due to the contributions of
wavefront and nonwavefront signal components. By decom-
posing the reflected wave into wavefront and nonwavefront
components, an algorithm is developed to convert the reflected
wave into the characteristic impedance of nonuniform trans-
mission line as a function of a space variable. Such a technique
leads to the reconstruction of lossless nonuniform transmission
lines when the reflected wave of a signal is specified in time
domain. Several experiments are carried out to verify the
theoretical results concerning the reconstruction of nonuniform
transmission line from reflected wave in time domain. The
results show that this new TDR technique produces better
results than the conventional methods widely employed in the
traditional TDR equipment.

II. THEORY

We consider a reflected wave having an arbitrary wave-
shape. The reflected wave is due to an incident step wave
upon a nonuniform transmission line. As shown in Fig. 1, the
reflected wave extends over an interval of time then it
reaches a steady-state value as timebecomes large. Here, we
assume that for no incident wave exists, and the reflected
wave is thus zero. The steady-state value of reflected wave is
determined by the source and load terminations. When the
terminated resistances on both sides of signal line are equal,

0018–9480/97$10.00 1997 IEEE



HSUE AND PAN: RECONSTRUCTION OF NONUNIFORM TRANSMISSION LINES 33

Fig. 1. A postulated reflected waveVr(t) due to an incident step wave upon
a nonuniform line at the input end.

the steady-state value of reflected wave is zero. For a signal
line having continuous variation of characteristic impedance,
the reflected wave appears to vary continuously. Of course,
if the transmission line composes several sections of discrete
signal lines, the reflected wave will be piecewisely continuous.
However, each piecewise change in the reflected wave is
not solely determined by a single discontinuity junction. Any
change in the reflected wave could also be due to many of the
impedance discontinuities, which cause the internal reflection-
transmission signals to arrive at the input port at the same
time. Once the reflected wave is obtained, we intend to find a
way to reconstruct the transmission line from the waveshape
of reflected wave. In other words, our goal is to obtain the
characteristic impedance as a function of space once the
step reflected wave is given. Here, we limit our attention to
dispersionless lossless line, i.e., the transmission line consists
of distributed elements only.

The time-domain reflected wave on a nonuniform line
is the result of a progressive process in which a reflected wave

is the summation of all signal components that suffer
from internal multiple reflection–transmission processes and
arrive at the input port at time In Fig. 2(a), we show an -
section transmission line wherein each section is characterized
by the characteristic impedance ( and the
propagation delay As approaches infinity, the multiple
section line can be used to represent a nonuniform signal
line. For an incident step wave having the magnitude
the reflected wave at the input port is [6]

(1a)

where

(1b)

Fig. 2. The incident and reflected waves of a nonuniform line which is
represented by a cascadedn-section uniform line.

and

(1c)

and is the unit step function, is the reflection
coefficient for the signals reflected back into theth sections at
the interfaces, and is the transmission coefficient
for the signals transmitted from theth sections into the th
sections. The single summation term of the first line in (1)
represents all the contributions from the single reflections at
the discontinuities in the line. Note that every reflected signal
suffers from an odd number of reflections at the discontinuities.

As is evident from (1), the conventional expressions of
yield little help for us to reconstruct the transmission line
once the reflected wave is obtained. If a nonuniform line is
treated as a cascaded-section line, presumedly from (1) we
may formulate equations that relate the reflected wave at

distinct time points and the characteristic impedances of
signal line. The values of characteristic impedances can be
obtained by solving these equations.

A close examination on (1) reveals that the formation of
reflected wave is a result of progressive process. The
value at some specific instant is due to the elements
of transmission line that lie on the left side of the point

, where is the wave propagation velocity in the
signal line. To construct a nonuniform line from the reflected
wave we divide the reflected wave into equal-length
subintervals, as shown in Fig. 3, whereis a large positive
integer. We assume that the reflected wave begins with
Each subinterval expands over a time period of
where is the total time of interest. The portion where
the reflected wave reaches the steady state contains only
information on the terminations. Therefore, we focus on the
portion of reflected wave that has transient ripple. As will be
shown later, only the first certain portion of reflected wave
is needed to completely reconstruct the transmission line. For

(as shown in Figs. 2 and 3) the characteristic impedance
is related to the reflected wave as

(2)

where is the reference characteristic impedance on the left-
hand side, is the characteristic impedance extending over a
physical length , and is the signal propagation velocity.
Note that the reflected wave is normalized with respect to the
amplitude of incident wave. As we proceed to the
characteristic impedance is related to the reflected wave

as

(3)
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where is

(4)

The characteristic impedance will again expand over a physical
length A close examination on the reflected wave
reveals that is due to the contribution of
wavefront reflection as well as nonwavefront reflection, i.e.,

nonwavefront reflection

wavefront reflection (5)

where (wavefront/nonwavefront reflection) represents
wavefront and nonwavefront signal components of reflected
wave, respectively. The wavefront reflected wave is the wave
component that passes through the discontinuity junctions
and is reflected back to the input end by the last discontinuity
junction of transmission line that the wavefront can reach. The
nonwavefront reflected wave, on the other hand, experiences
multiple reflection processes at discontinuity junctions other
than the last junction of signal line. The reflected wave
occurring at is given by

nonwavefront reflection

(6)

where Because the reflected wave is normalized
with respect to the amplitude of incident wave, no incident
voltage appears in (6). The term (nonwavefront reflection)
is a function of but not the the characteristic
impedance variable and its value can be obtained from
(1). Rearranging the formulation in (6), we then get the
characteristic impedance as follows:

(7)

where is

(8)

Equations (7) and (8) are the recursive formulations for the
reconstruction process of nonuniform line. The new value

is determined by the reflected wave and preceding
characteristic impedances The conventional
TDR technique indicates that depends on the value of
only [1], [2] and is independent of any value of reflected wave
for The novel technique described here reveals that the
value of depends on the sequences and values of for

In other words, to obtain we not only need to
know the value of , but also we need to have the history
of A given value of subject to different history
of will yield different value of
It is pertinent to point out that the reconstruction process is
valid for nonuniform lines providing that the step sizeis
small enough to accurately represent the changes. Clearly, the
piecewise constant approximation to the transmission line will

Fig. 3. A reflected wave is divided inton equal subintervals in time domain.

fail over any section of the line that has a rapid change in
impedance.

In general, the transient ripple of a nonuniform transmission
line will last a rather long time, which could be much longer
than the round trip time for the wave traveling back and
forth the nonuniform section of signal line. This indicates
that in the computation procedure, we may reach a converged
load characteristic impedance at the load end well before the
appearance of steady-state condition of the reflected wave.
However, it is very difficult to determine the round-trip time of
nonuniform line by merely observing the reflected wave
To assure the completeness of reconstruction of nonuniform
lines, it is, therefore, a conservative choice that the time of
interest extends from to , wherein the steady state
is reached. If the round-trip transit time of nonuniform line
is known, the reconstruction process only needs to consider a
time equal to round-trip transit time from end to end of the
unknown section. Another advantage of such a reconstruction
process is that the portion following after the essential part of
interest will not affect results of reconstruction.

III. N UMERICAL EXAMPLE

We present numerical as well as experimental results to
illustrate the validity of the above reconstruction procedures
for nonuniform transmission lines. The step response of the
reflected wave of a nonuniform line is needed to complete
the reconstruction process. However, it also may be obtained
indirectly from the Fourier transformation of its corresponding
frequency response of the signal line if sufficient bandwidth
is included.

In Fig. 4, we show reflected waves of exponential lines
terminated with matched loads at both ends of the signal lines
when a unit step wave is incident upon the signal lines. The
characteristic impedance of the signal line as a function of the
space variable is given by

(9)

where is the physical length and and are the charac-
teristic impedances at the left (source) and right (load) sides of
the exponential line, respectively. The step responses in Fig. 4
are obtained by taking direct integrations of their time-domain
scattering parameters [7] for both and

respectively. The horizontal scale is the time normalized
to propagation delay across the line, i.e., designates
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Fig. 4. The reflected wavesVr(t) due to an incident step wave upon
exponential signal lines from the source ends.

the time elapsed for signal traveling across the signal line.
To reconstruct the signal line, we divide the reflected wave in
Fig. 4 into 400 equal subintervalsNote that the wave has the
same propagation velocityin each portion of the exponential
line [7]. The reconstructed signal line consists of cascaded
multiple sections; each section has a characteristic impedance

and a physical length of Fig. 5 shows the variation
of characteristic impedances of reconstructed signal lines as a
function of We assume that is 10 for both cases. To
illustrate the accuracy of the reconstructed nonuniform lines, in
Fig. 5 we show the dashed lines that represent the impedance
of the exponential lines calculated by (9). Apparently, the
characteristic impedance of the reconstructed nonuniform line
reaches its steady-state value at , which corresponds to

in Fig. 4. This example reveals that the transition ripples
for in Fig. 4 are due to internal reflection–transmission
processes of exponential lines, which are not caused by other
reflection mechanism occurring at Since the line is
terminated at both ends in a matched impedance, we should
have realized that all time-domain activity after must be
due to multiple internal reflections even before the numerical
simulation was run. However, our calculation results in Fig. 5
involve the time-domain response for in Fig. 4.

IV. EXPERIMENTAL RESULTS

Fig. 6 shows the layouts of two nonuniform microstrip lines.
The variation of characteristic impedances as a function of
space is also shown in the figure. Notice that the change from
50 to 10 in Fig. 6(a) is set so that the width of signal
line varies linearly. Therefore, the characteristic impedances
of signal line may not vary linearly. A similar situation holds
for the nonuniform line in Fig. 6(b). These two microstrip
lines are built on Duroid substate having thickness 31 mils and
relative dielectric constant 2.5. We use an HP8510C network
analyzer to measure the reflection scattering parameters

Fig. 5. The reconstructed and original exponential lines as a function of
space variablex:

(a)

(b)

Fig. 6. The physical layouts of two nonuniform microstrip lines.

of these two nonuniform microstrip lines with a frequency of
45 MHz–18.045 GHz. Complex reflection data are obtained
at each 22.5-MHz interval. The reflection coefficient is set
to zero at dc and at 22.5 MHz is assumed to be the
average value of reflection coefficients at dc and 45 MHz.
These two data are added manually because of the limitation
of operation frequency range of HP8510C network analyzer.
Although HP8510C network analyzer provides some form of
time-domain responses, the data is not useful for our method.
These complex frequency-domain reflection coefficients are
converted into time-domain parameters by taking an inverse
Fourier transform via MATLAB software tool. It is pertinent
to point out that to obtain real causal solution in time domain,
it is necessary to get the complex conjugate of first
before performing inverse Fourier transformation. That is, the
reflection coefficient [12] is cast in the form of

(10)

To obtain the step response of nonuniform line from its
frequency-domain coefficient, we employ the series form of
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inverse Fourier transform [13], which is as follows:

(11)

where represents inverse discrete Fourier transform,
and is the number of data involved

in the computation, is the frequency-domain reflection
coefficient, and is the step response in time domain.
Such an approach is employed due do the fact that using a
step function is much more efficient from a computational
standpoint than using the impulse function. The Fourier
transform of the impulse is constant over all frequencies
while the step function decreases as away from dc. This
falloff helps the integral converge faster which is critical with
band-limited data.

Fig. 7(a) and 7(b) are the reflected step responses
of nonuniform lines in Fig. 6(a) and (b), respectively, which
are obtained by measuring scattering parameters via
network analyzer and taking the proper inverse Fourier trans-
forms. When a step wave is incident upon these nonuniform
lines due to the small value of characteristic impedance in the
signal line, it produces negative reflected waves at the input
ends of signal lines. As shown in Fig. 7, the reflected waves
suffer several abrupt changes at the discontinuous junctions.
Apparently, the reflected step waves last a rather long time
before they reach steady-state value. The dashed lines in Fig. 7
show the reflected step waves of the nonuniform lines which
are achieved by directly computing the reflected waves in time
domain, as shown in (1). Since the width of nonuniform line
is given (as shown in Fig. 6), the characteristic impedance
and effective dielectric constant (or propagation delay) at
every point on the nonuniform lines can be computed [11]
from the following:

(12a)

and (12b), shown at the bottom of the page, whereis
the relative dielectric constant of substrate,is the thickness
of substrate, and is the width of signal line. Here, we
assume that the structures are lossless and they are indepen-
dent of signal frequencies. Clearly, the results obtained from
experiments are in good agreement with those obtained by
theoretical calculation. Such close agreement indicates that
the data obtained from HP8510C network analyzer
are very accurate. In numerical calculation, we assume that
the microstrip line structures considered here are lossless for
the frequency range of interest. Fig. 8(a) and (b) shows the
reconstructed characteristic impedances of nonuniform lines
as a function of space variable for the nonuniform lines
in Fig. 6(a) and (b), respectively. Notice that two nonuniform

(a)

(b)

Fig. 7. The time-domain reflected waves of nonuniform lines in Fig. 6(a) and
(b), respectively. The reflected waves are obtained from HP8510C network
analyzer and inverse Fourier transform.

lines in Fig. 6(a) and (b) have the same physical length from
the left end to the right end. We obtain the reconstructed
characteristic impedances from in Fig. 7 via (7),
where is the time. is then converted into by using
the time-to-space translation:

(13)

where is the space subinterval, is the time subinterval,
is the signal propagation velocity, is the speed of light

in vacuum, and is the effective dielectric constant. As
shown in (12), the effective dielectric constant can be
obtained [11] if the characteristic impedance and relative

for

for
(12b)
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(a)

(b)

Fig. 8. The characteristic impedance distribution of original and recon-
structed nonuniform lines for the configurations in Fig. 6(a) and (b), respec-
tively.

dielectric constant are given. For convenience, we show the
characteristic impedances computed from the physical layouts
in Fig. 6, which are shown in dashed lines. The results reveal
that the wavefront reaches point in Fig. 6 and is reflected
back to the input end at time ns. The transient
ripple occurring after ns is due to internal reflection-
transmission processes of nonuniform lines and is not caused
by the reflection processes for the wavefront traveling beyond
point The small transient ripple at time 1.7 ns is due
to the mismatched effect of microstrip-to-coax connector on
the right-hand side of nonuniform line, where the right-hand
side connector is loaded with a 50-termination. Note that
this reconstruction method is based on the assumption that the
nonuniform transmission lines are lossless and dispersionless.
This method fails if losses and/or dispersion play a significant
role.

To compare the results with those obtained from the con-
ventional TDR measurements, in Fig. 9 we show the direct
TDR measurement results of microstrip lines. Fig. 9(a) depicts
the time-domain reflected wave and Fig. 9(b) shows
the measured characteristic impedance . The experi-

(a)

(b)

Fig. 9. HP54750A TDR measurement results of nonuniform lines in Fig. 6.
(a) The reflected waveVr(t): (b) The characteristic impedanceZ(x):

mental data are attained by employing HP54750A digital
oscilloscope/TDR instrument. It is clear that the reflected
waves of TDR measurements are in good agreement
with those obtained from network-analyzer/inverse Fourier-
transform method. The HP54750A TDR measurements give
us inaccurate characteristic impedances of the nonuniform
microstrip lines in Fig. 6. Such a discrepancy is due to
the fact that the conventional TDR method converts the
reflected wave into the characteristic impedances by assuming
that the the reflected wave occurring at time is
caused only by the strike of step-incident wavefront at the
discontinuity junction with being the propagation
velocity of signal. The effect of such a faulty assumption on
the measurement of characteristic impedance is twofold: it
disregards the transformer effect of transmission line on the
incident wavefront and it neglects the contribution of internal
multiple reflection–transmission process to the reflected wave
[5]. The former feature causes the inaccuracy in the magni-
tude of the characteristic impedance. The latter effect causes
the “spreading” of nonuniform portion of the reconstructed
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(a)

(b)

Fig. 10. The comparison between TDR results and the results in Fig. 8. (a)
Signal line in Fig. 6(a). (b) Signal line in Fig. 6(b).

signal line in Fig. 9. In other words, the neglect of internal
transmission–reflection phenomenon causes the deviation of
characteristic impedance from 50for 1.42 ns in Fig. 9.
For convenience, in Fig. 10 we show the comparison between
the TDR measurement results and the results in Fig. 8.

V. CONCLUSION

We have developed a novel reconstruction technique for
lossless nonuniform transmission lines. Such a reconstruction
technique is superior to the conventional TDR method which
is proven to be inaccurate when a transmission line consists
of multiple discontinuities. This reconstruction technique is
applicable to many other physical structures as long as those
structures can be represented by equivalent transmission-line
representations.
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